๐Ÿ“— Class 12 Maths โ€“ Determinants (Advanced Notes)

Understand every theorem, formula, and shortcut of Determinants with visual clarity and memory-based learning.

๐Ÿ”น Introduction to Determinants

A Determinant is a scalar value that can be computed from a square matrix. It helps determine whether a matrix is invertible and plays a major role in coordinate geometry, vector transformations, and system of equations.

| aโ‚โ‚ aโ‚โ‚‚ aโ‚โ‚ƒ | | aโ‚‚โ‚ aโ‚‚โ‚‚ aโ‚‚โ‚ƒ | | aโ‚ƒโ‚ aโ‚ƒโ‚‚ aโ‚ƒโ‚ƒ |

Representation of a 3ร—3 Determinant

๐Ÿ”น Important Formulas

2ร—2 Determinant: |A| = ad โˆ’ bc
3ร—3 Determinant: |A| = aโ‚โ‚(aโ‚‚โ‚‚aโ‚ƒโ‚ƒโˆ’aโ‚‚โ‚ƒaโ‚ƒโ‚‚) โˆ’ aโ‚โ‚‚(aโ‚‚โ‚aโ‚ƒโ‚ƒโˆ’aโ‚‚โ‚ƒaโ‚ƒโ‚) + aโ‚โ‚ƒ(aโ‚‚โ‚aโ‚ƒโ‚‚โˆ’aโ‚‚โ‚‚aโ‚ƒโ‚)
Property 1: If any two rows or columns are identical, then |A| = 0
Property 2: Interchanging two rows changes the sign of determinant
Property 3: |Aแต€| = |A|
Property 4: |AB| = |A| ร— |B|

๐Ÿ”น Geometrical Meaning of Determinant

For a 2ร—2 matrix representing points in 2D, |A| gives the area of a parallelogram formed by column vectors.

A B C D

Area of parallelogram = |Determinant|

๐Ÿ”น Theorems on Determinants

Theorem 1: If a row (or column) of a determinant is multiplied by a constant k, then determinant becomes k times its original value.

Theorem 2: If any two rows (or columns) of a determinant are interchanged, its value changes sign.

Theorem 3: If all elements of a row are sum of two terms, determinant can be expressed as sum of two determinants.

๐Ÿงฎ Solved Examples (Step-by-Step)

Example 1: Find determinant of [[2,3],[1,4]]. โ†’ |A| = (2ร—4)โˆ’(3ร—1) = 8โˆ’3 = 5

Example 2: Find |A| for [[1,2,3],[2,4,6],[1,2,3]]. โ†’ Two rows are proportional โ‡’ |A| = 0 โœ…

Example 3: Find determinant of [[1,0,2],[โˆ’1,3,1],[3,2,4]]. โ†’ Expansion = 1(3ร—4โˆ’1ร—2) โˆ’ 0 + 2(โˆ’1ร—2โˆ’3ร—3) = 10 โˆ’ 26 = โˆ’16

Example 4: Show |Aแต€| = |A| for [[1,2],[3,4]] โœ…

Example 5: If A = [[1,2],[3,4]] and B = [[0,1],[2,3]], find |AB| = |A||B| = (โˆ’2)(โˆ’2) = 4

Example 6: Find area of triangle with vertices (1,2), (3,โˆ’1), (2,3). โ†’ Area = ยฝ| xโ‚(yโ‚‚โˆ’yโ‚ƒ) + xโ‚‚(yโ‚ƒโˆ’yโ‚) + xโ‚ƒ(yโ‚โˆ’yโ‚‚) | = ยฝ|1(โˆ’1โˆ’3)+3(3โˆ’2)+2(2โˆ’(โˆ’1))| = ยฝ|โˆ’4+3+6| = 2.5 sq. units

Example 7: Evaluate determinant by row transformation. [[1,2,1],[2,3,4],[3,4,5]] โ†’ Rโ‚‚โ†’Rโ‚‚โˆ’2Rโ‚, Rโ‚ƒโ†’Rโ‚ƒโˆ’3Rโ‚ โ†’ simplifies to upper triangular form โ†’ |A| = product of diagonal = 1ร—(โˆ’1)ร—(โˆ’1)=1

Example 8: If determinant is 0, show rows are linearly dependent โœ…

๐Ÿงพ Summary Table

ConceptFormula
2ร—2 Determinant|A| = ad โˆ’ bc
3ร—3 DeterminantExpansion by minors
Transpose|Aแต€| = |A|
Multiplication|AB| = |A||B|
Singular Matrix|A| = 0

๐Ÿ“˜ Practice Questions

  1. Find determinant of A = [[4,5],[2,3]]
  2. Prove |Aแต€| = |A|
  3. Find area of triangle (1,2),(3,5),(5,1)
  4. If |A|=2, find |3A|
  5. Evaluate |[[2,3,1],[4,1,5],[1,2,3]]|

Answer Key