Introduction — At a glance
These notes cover the full Class 12 chapter on Differential Equations. You will find concise theorems, precise formula tables, step-by-step proofs and 8 solved examples that transfer the chapter to memory — the drills, diagrams (SVG) and mnemonics help long-term recall.
Why this page?
- Exam-focused: board & competitive exam relevance (SSC, Railway, Police Bharti, NEET quick-revision).
- Memory-first layout: theorem → proof → example → mnemonic.
- SEO-ready: canonical & JSON-LD included for rich snippets (Course, Breadcrumb, FAQ).
Key concepts & forms
- Separable equations:
dy/dx = g(x) h(y). Separate and integrate. - Homogeneous equations:
dy/dx = F(y/x). Use substitutiony = vx. - Exact equations:
M(x,y)dx + N(x,y)dy = 0, check∂M/∂y = ∂N/∂x. - Linear (1st order):
dy/dx + P(x) y = Q(x), integrating factor:μ(x)=e^{∫P(x)dx}. - Bernoulli:
dy/dx + P y = Q y^n→ transform withz = y^{1-n}. - Cauchy–Euler:
x^2 y'' + ax y' + by = 0, tryy=x^m.
Theorems & Proofs (compact)
Theorem 1 — Integrating factor for linear first-order
Statement: For dy/dx + P(x)y = Q(x) the integrating factor is μ(x)=e^{∫P(x)dx}. Multiplying transforms LHS into d/dx(μ y).
Proof (brief): Multiply both sides by μ, choose μ so that d(μ)/dx = μ P. This gives d(μ y)/dx = μ Q. Integrate both sides to get μ y = ∫ μ Q dx + C.
SVG Diagrams (unit circle & triangle method)
Formula summary table
| Type | Standard form | Solution / Tip |
|---|---|---|
| Separable | dy/dx = g(x)h(y) | Integrate: ∫ dy/h(y) = ∫ g(x) dx |
| Linear (1st) | dy/dx + P(x)y = Q(x) | Integrating factor μ=e^{∫Pdx}, then y=(1/μ)∫μQdx |
| Exact | Mdx + Ndy = 0 | Check ∂M/∂y=∂N/∂x, find potential Φ(x,y) |
| Bernoulli | dy/dx + P y = Q y^n | Substitute z=y^{1-n} to get linear |
| Cauchy–Euler | x^2 y'' + a x y' + b y = 0 | Try y=x^m, find m from characteristic equation |
परिचय — सारांश
ही नोट्स Differential Equations चा संपूर्ण अध्याय कव्ह करतात — सिद्धांत, साक्षात्कार, 8 सोपे केल्येली उदाहरणे, सराव प्रश्न आणि SVG आकृत्या. परीक्षेच्या दृष्टीने उपयुक्त (SSC, Railway, Police Bharti, NEET).
महत्वाचे तत्त्वे
- Separable:
dy/dx = g(x) h(y). विभाजित करुन समाकलन करा. - Homogeneous:
dy/dx = F(y/x).y=vxवापर. - Exact:
Mdx + Ndy = 0, तपासा∂M/∂y = ∂N/∂x. - Linear 1st:
dy/dx + P(x)y = Q(x), Integrating factor:μ=e^{∫P(x)dx}.
साधी आठवण
Solved Examples — Step by step (8)
Example 1 — Separable (exponential growth)
Problem: Solve dy/dx = k y where k is constant.
Solution: Separate variables: dy/y = k dx. Integrate both sides: ln|y| = kx + C. So y = C e^{kx}.
Example 2 — Separable
Problem: Solve dy/dx = y cos x.
Solution: dy/y = cos x dx. Integrate: ln|y| = sin x + C. Hence y = C e^{sin x}.
Example 3 — Linear first order (integrating factor)
Problem: Solve dy/dx + y tan x = sin x.
Solution:
- Standard form:
dy/dx + P(x) y = Q(x)withP(x)=tan x,Q(x)=sin x. - Integrating factor:
μ(x)=e^{∫P dx}=e^{∫tan x dx}=e^{-ln|cos x|}=1/|cos x|. Takeμ=1/cos x(assume cos x >0 region). - Multiply:
(1/cos x) dy/dx + (tan x / cos x) y = tan x. Left side isd/dx (y/cos x). - Integrate:
y/cos x = ∫ tan x dx = -ln|cos x| + C. - Thus
y = cos x (-ln|cos x| + C).
Example 4 — Exact equation
Problem: Solve (2xy + 3x^2) dx + (x^2 + 4y) dy = 0.
Solution:
- Check exactness:
∂M/∂y = 2x,∂N/∂x = 2x— exact. - Find potential Φ(x,y):
Φ_x = M = 2xy + 3x^2. Integrate w.r.t x:Φ = x^2 y + x^3 + h(y). - Differentiate w.r.t y:
Φ_y = x^2 + h'(y) = N = x^2 + 4y. Soh'(y)=4y→h=2y^2. - Solution:
x^2 y + x^3 + 2y^2 = C.
Example 5 — Homogeneous equation
Problem: Solve dy/dx = (x + y)/(x - y).
Solution:
- Substitute
y = v x→dy/dx = v + x dv/dx. - RHS becomes
(1 + v)/(1 - v). Sov + x dv/dx = (1+v)/(1-v). - Simplify:
x dv/dx = (1+v)/(1-v) - v = (1+v - v(1-v))/(1-v) = (1+v^2)/(1-v). - Separate variables:
((1-v)/(1+v^2)) dv = dx/x. Integrate both sides. - Left integral:
∫(1/(1+v^2) dv) - ∫(v/(1+v^2) dv) = arctan v - (1/2) ln(1+v^2). - So
arctan(v) - 1/2 ln(1+v^2) = ln|x| + C. Replacev=y/xfor implicit solution.
Example 6 — Second order linear with constant coefficients
Problem: Solve y'' - 3y' + 2y = 0.
Solution: Characteristic equation r^2 - 3r + 2 = 0 → roots r=1,2. General solution: y = C_1 e^{x} + C_2 e^{2x}.
Example 7 — Cauchy–Euler equation
Problem: Solve x^2 y'' - 3x y' + 4 y = 0 for x > 0.
Solution: Try y = x^m. Then characteristic: m(m-1) - 3m + 4 = 0 → m^2 - 4m +4 = 0 → (m-2)^2 = 0. Double root m=2. General solution: y = (C_1 + C_2 ln x) x^2.
Example 8 — Bernoulli equation
Problem: Solve dy/dx + y = y^2 e^{x}.
Solution:
- Rewrite:
dy/dx + P y = Q y^nwithP=1, Q=e^{x}, n=2. - Put in Bernoulli form: divide by
y^2:y^{-2} dy/dx + y^{-1} = e^{x}. Noted/dx(y^{-1}) = -y^{-2} dy/dx. - Let
z = y^{-1}. Thendz/dx - z = - e^{x}. - This is linear in z. Integrating factor
μ=e^{-∫1 dx}=e^{-x}. Multiply and integrate:d/dx(z e^{-x}) = -1→z e^{-x} = -x + C. - So
z = e^{x}(-x + C)andy = 1/z = e^{-x}/(C - x).
Practice Questions
- Solve
dy/dx = (2x)/(1+y^2). - Solve
dy/dx + 2y = xwithy(0)=1. - Check if
(y + x)dx + (x - y)dy = 0is exact. If not, find an integrating factor if possible. - Solve
dy/dx = (x^2 + y^2)/(xy)(Hint: homogeneous). - Solve
x^2 y'' - x y' + y = 0(Cauchy–Euler). - Find general solution of
y'' + 4y = 0.
Answer Key (brief)
∫(1+y^2) dy = ∫ 2x dx ⇒ y + y^3/3 = x^2 + C(implicit).- Integrating factor
μ=e^{2x}. Solve:y e^{2x} = ∫ x e^{2x} dx + C→ compute givesy = (x/2 - 1/4) + Ce^{-2x}adjust to meet initial condition →y = (x/2 - 1/4) + (5/4)e^{-2x}(verify arithmetic in full solution on page). - Not exact: compute partials; integrating factor μ(x)=1/(x^2 + y^2) may work (exercise to verify) — see full worked steps in extended notes.
- Homogeneous: set
y=vx, solve for v(x) and integrate — implicit solution. - Try
y=x^m, gives equation in m; solve quadratic for m and write general solution. - Characteristic
r^2 + 4 = 0→r=±2i→y = C_1 cos 2x + C_2 sin 2x.
SEO notes & keywords (for rsetu.link)
This page has been prepared with SEO best-practices: unique title & meta description, canonical URL (rsetu.link), JSON-LD Course/Breadcrumb/FAQ, heading hierarchy (H1/H2/H3), and in-content entity-rich keywords.
Target keywords (seed + long-tail)
- "Differential Equations notes class 12"
- "differential equations solved examples"
- "class 12 maths chapter differential equations summary"
- "police bharti maths notes"
- "railway exam maths notes"
- "ssc maths notes differential equations"
- "neet quick revision notes"
Place these keywords naturally in H1/H2 tags and the first 100-150 words to help Google NLP — avoid keyword stuffing. Ensure other Class 12 pages have unique titles/descriptions to prevent duplication.