Differential Equations — Class 12 (Advanced)

Clear theorems • full proofs • 8 solved examples • practice questions • rsetu.link

Introduction — At a glance

These notes cover the full Class 12 chapter on Differential Equations. You will find concise theorems, precise formula tables, step-by-step proofs and 8 solved examples that transfer the chapter to memory — the drills, diagrams (SVG) and mnemonics help long-term recall.

Why this page?

  • Exam-focused: board & competitive exam relevance (SSC, Railway, Police Bharti, NEET quick-revision).
  • Memory-first layout: theorem → proof → example → mnemonic.
  • SEO-ready: canonical & JSON-LD included for rich snippets (Course, Breadcrumb, FAQ).

Key concepts & forms

  1. Separable equations: dy/dx = g(x) h(y). Separate and integrate.
  2. Homogeneous equations: dy/dx = F(y/x). Use substitution y = vx.
  3. Exact equations: M(x,y)dx + N(x,y)dy = 0, check ∂M/∂y = ∂N/∂x.
  4. Linear (1st order): dy/dx + P(x) y = Q(x), integrating factor: μ(x)=e^{∫P(x)dx}.
  5. Bernoulli: dy/dx + P y = Q y^n → transform with z = y^{1-n}.
  6. Cauchy–Euler: x^2 y'' + ax y' + by = 0, try y=x^m.

Theorems & Proofs (compact)

Theorem 1 — Integrating factor for linear first-order

Statement: For dy/dx + P(x)y = Q(x) the integrating factor is μ(x)=e^{∫P(x)dx}. Multiplying transforms LHS into d/dx(μ y).

Proof (brief): Multiply both sides by μ, choose μ so that d(μ)/dx = μ P. This gives d(μ y)/dx = μ Q. Integrate both sides to get μ y = ∫ μ Q dx + C.

Mnemonic: "Mu = e^{∫P}" — say it: "Mu eats P" (helps you remember μ uses the exponent of P).

SVG Diagrams (unit circle & triangle method)

Formula summary table

TypeStandard formSolution / Tip
Separabledy/dx = g(x)h(y)Integrate: ∫ dy/h(y) = ∫ g(x) dx
Linear (1st)dy/dx + P(x)y = Q(x)Integrating factor μ=e^{∫Pdx}, then y=(1/μ)∫μQdx
ExactMdx + Ndy = 0Check ∂M/∂y=∂N/∂x, find potential Φ(x,y)
Bernoullidy/dx + P y = Q y^nSubstitute z=y^{1-n} to get linear
Cauchy–Eulerx^2 y'' + a x y' + b y = 0Try y=x^m, find m from characteristic equation

परिचय — सारांश

ही नोट्स Differential Equations चा संपूर्ण अध्याय कव्ह करतात — सिद्धांत, साक्षात्कार, 8 सोपे केल्येली उदाहरणे, सराव प्रश्न आणि SVG आकृत्या. परीक्षेच्या दृष्टीने उपयुक्त (SSC, Railway, Police Bharti, NEET).

महत्वाचे तत्त्वे

  1. Separable: dy/dx = g(x) h(y). विभाजित करुन समाकलन करा.
  2. Homogeneous: dy/dx = F(y/x). y=vx वापर.
  3. Exact: Mdx + Ndy = 0, तपासा ∂M/∂y = ∂N/∂x.
  4. Linear 1st: dy/dx + P(x)y = Q(x), Integrating factor: μ=e^{∫P(x)dx}.

साधी आठवण

"Mu = e^{∫P}" — लक्षात ठेवा, Mu म्हणजे Integrating factor.

Solved Examples — Step by step (8)

Example 1 — Separable (exponential growth)

Problem: Solve dy/dx = k y where k is constant.

Solution: Separate variables: dy/y = k dx. Integrate both sides: ln|y| = kx + C. So y = C e^{kx}.

Example 2 — Separable

Problem: Solve dy/dx = y cos x.

Solution: dy/y = cos x dx. Integrate: ln|y| = sin x + C. Hence y = C e^{sin x}.

Example 3 — Linear first order (integrating factor)

Problem: Solve dy/dx + y tan x = sin x.

Solution:

  1. Standard form: dy/dx + P(x) y = Q(x) with P(x)=tan x, Q(x)=sin x.
  2. Integrating factor: μ(x)=e^{∫P dx}=e^{∫tan x dx}=e^{-ln|cos x|}=1/|cos x|. Take μ=1/cos x (assume cos x >0 region).
  3. Multiply: (1/cos x) dy/dx + (tan x / cos x) y = tan x. Left side is d/dx (y/cos x).
  4. Integrate: y/cos x = ∫ tan x dx = -ln|cos x| + C.
  5. Thus y = cos x (-ln|cos x| + C).

Example 4 — Exact equation

Problem: Solve (2xy + 3x^2) dx + (x^2 + 4y) dy = 0.

Solution:

  1. Check exactness: ∂M/∂y = 2x, ∂N/∂x = 2x — exact.
  2. Find potential Φ(x,y): Φ_x = M = 2xy + 3x^2. Integrate w.r.t x: Φ = x^2 y + x^3 + h(y).
  3. Differentiate w.r.t y: Φ_y = x^2 + h'(y) = N = x^2 + 4y. So h'(y)=4yh=2y^2.
  4. Solution: x^2 y + x^3 + 2y^2 = C.

Example 5 — Homogeneous equation

Problem: Solve dy/dx = (x + y)/(x - y).

Solution:

  1. Substitute y = v xdy/dx = v + x dv/dx.
  2. RHS becomes (1 + v)/(1 - v). So v + x dv/dx = (1+v)/(1-v).
  3. Simplify: x dv/dx = (1+v)/(1-v) - v = (1+v - v(1-v))/(1-v) = (1+v^2)/(1-v).
  4. Separate variables: ((1-v)/(1+v^2)) dv = dx/x. Integrate both sides.
  5. Left integral: ∫(1/(1+v^2) dv) - ∫(v/(1+v^2) dv) = arctan v - (1/2) ln(1+v^2).
  6. So arctan(v) - 1/2 ln(1+v^2) = ln|x| + C. Replace v=y/x for implicit solution.

Example 6 — Second order linear with constant coefficients

Problem: Solve y'' - 3y' + 2y = 0.

Solution: Characteristic equation r^2 - 3r + 2 = 0 → roots r=1,2. General solution: y = C_1 e^{x} + C_2 e^{2x}.

Example 7 — Cauchy–Euler equation

Problem: Solve x^2 y'' - 3x y' + 4 y = 0 for x > 0.

Solution: Try y = x^m. Then characteristic: m(m-1) - 3m + 4 = 0m^2 - 4m +4 = 0(m-2)^2 = 0. Double root m=2. General solution: y = (C_1 + C_2 ln x) x^2.

Example 8 — Bernoulli equation

Problem: Solve dy/dx + y = y^2 e^{x}.

Solution:

  1. Rewrite: dy/dx + P y = Q y^n with P=1, Q=e^{x}, n=2.
  2. Put in Bernoulli form: divide by y^2: y^{-2} dy/dx + y^{-1} = e^{x}. Note d/dx(y^{-1}) = -y^{-2} dy/dx.
  3. Let z = y^{-1}. Then dz/dx - z = - e^{x}.
  4. This is linear in z. Integrating factor μ=e^{-∫1 dx}=e^{-x}. Multiply and integrate: d/dx(z e^{-x}) = -1z e^{-x} = -x + C.
  5. So z = e^{x}(-x + C) and y = 1/z = e^{-x}/(C - x).

Practice Questions

  1. Solve dy/dx = (2x)/(1+y^2).
  2. Solve dy/dx + 2y = x with y(0)=1.
  3. Check if (y + x)dx + (x - y)dy = 0 is exact. If not, find an integrating factor if possible.
  4. Solve dy/dx = (x^2 + y^2)/(xy) (Hint: homogeneous).
  5. Solve x^2 y'' - x y' + y = 0 (Cauchy–Euler).
  6. Find general solution of y'' + 4y = 0.

Answer Key (brief)

  1. ∫(1+y^2) dy = ∫ 2x dx ⇒ y + y^3/3 = x^2 + C (implicit).
  2. Integrating factor μ=e^{2x}. Solve: y e^{2x} = ∫ x e^{2x} dx + C → compute gives y = (x/2 - 1/4) + Ce^{-2x} adjust to meet initial condition → y = (x/2 - 1/4) + (5/4)e^{-2x} (verify arithmetic in full solution on page).
  3. Not exact: compute partials; integrating factor μ(x)=1/(x^2 + y^2) may work (exercise to verify) — see full worked steps in extended notes.
  4. Homogeneous: set y=vx, solve for v(x) and integrate — implicit solution.
  5. Try y=x^m, gives equation in m; solve quadratic for m and write general solution.
  6. Characteristic r^2 + 4 = 0r=±2iy = C_1 cos 2x + C_2 sin 2x.

SEO notes & keywords (for rsetu.link)

This page has been prepared with SEO best-practices: unique title & meta description, canonical URL (rsetu.link), JSON-LD Course/Breadcrumb/FAQ, heading hierarchy (H1/H2/H3), and in-content entity-rich keywords.

Target keywords (seed + long-tail)

  • "Differential Equations notes class 12"
  • "differential equations solved examples"
  • "class 12 maths chapter differential equations summary"
  • "police bharti maths notes"
  • "railway exam maths notes"
  • "ssc maths notes differential equations"
  • "neet quick revision notes"

Place these keywords naturally in H1/H2 tags and the first 100-150 words to help Google NLP — avoid keyword stuffing. Ensure other Class 12 pages have unique titles/descriptions to prevent duplication.