CAT — Algebra: Linear & Quadratic Equations, Inequalities & Functions

Advanced conceptual notes, solved examples for every subtopic, and 50 CAT-style MCQs. SEO-ready for rsetu.link.

Level: Advanced Solved examples included 50 MCQs
SEO Domain: rsetu.link

Linear Equations

Linear equations in one variable: ax + b = 0x = −b/a. In two variables: lines with slope-intercept form y = mx + c and simultaneous linear equations solved by substitution, elimination, or matrix methods for higher dimensions.

Tips: For simultaneous equations, use elimination with coefficients to cancel variables; for systems with parameters, look for consistency (determinant ≠ 0).

Solved examples

Example 1: Solve 3x − 7 = 2. Solution: 3x = 9 → x = 3.
Example 2 (simultaneous): Solve 2x + 3y = 13 and 4x − y = 5. Eliminate y: multiply 2nd by 3 → 12x − 3y = 15. Add to first → 14x = 28 → x = 2. Then 2×2 + 3y = 13 → y = 3.

Quadratic Equations

Standard form ax^2 + bx + c = 0. Roots via formula x = (−b ± √(b^2 − 4ac)) / (2a). Discriminant Δ = b^2 − 4ac determines nature of roots (Δ>0 two reals; Δ=0 one repeated; Δ<0 complex).

Vieta's formulas: If roots r1, r2 then r1 + r2 = −b/a and r1 r2 = c/a.

Tricks: Use factoring when integer roots suspected; complete the square for vertex form; use substitution for symmetric equations.

Solved examples

Example 3: Solve x^2 − 5x + 6 = 0. Factor: (x−2)(x−3)=0 → x=2,3.
Example 4: Find sum and product of roots of 2x^2 − 7x + 3 = 0. Sum = 7/2, product = 3/2.
Example 5 (parameter): For what k does x^2 + 2(k−1)x + k = 0 have equal roots? Δ=4(k−1)^2 − 4k = 0 → (k−1)^2 − k =0 → k^2 −3k +1 =0 → k = (3 ± √5)/2.

Inequalities

Inequalities: linear (ax + b < 0), quadratic (ax^2 + bx + c ≥ 0), and absolute value. Key rules: multiplying both sides by negative reverses inequality; solution sets often intervals; for quadratics use sign-analysis with roots as critical points.

Solved examples

Example 6: Solve 2x − 5 > 1 → 2x > 6 → x > 3.
Example 7: Solve x^2 − 5x + 6 < 0. Roots 2 and 3 → quadratic opens up → negative between roots → 2 < x < 3.
Example 8 (modulus): Solve |x − 2| ≤ 3 → −3 ≤ x − 2 ≤ 3 → −1 ≤ x ≤ 5.

Functions

Function f maps domain → range. Key concepts: injective (one-to-one), surjective (onto), bijective (both). Composition (f∘g)(x) = f(g(x)). Inverse f^{-1} exists iff f is bijection. Common special functions: modulus, floor/ceiling, piecewise linear, polynomials.

Domain & Range: Determine domain by excluding values causing division by zero or negative inside even root; range via algebraic manipulation or monotonicity.

Solved examples

Example 9: If f(x)=2x+3, inverse f^{-1}(y)=(y−3)/2.
Example 10: For f(x)=x^2 defined on ℝ, inverse doesn't exist globally; restrict domain x≥0 then inverse is √x.

Advanced Techniques & Shortcuts

  • Symmetric equations: For equations symmetric in x and y, use substitution s=x+y, p=xy and reduce degree.
  • Root bounding: Use rational root theorem for integer roots, Sturm/Descartes' rule for sign changes if needed.
  • Inequality tricks: AM-GM for non-negative variables, Cauchy-Schwarz for sums/products, rearrangement for ordered sums.
  • Functions: Check monotonicity by derivative (if allowed) or sign of increments for integer problems.

50 Practice MCQs — Algebra (Answers highlighted, solved examples included above)

Questions cover linear/quadratic solving, parameter conditions, inequalities, function domain/range, composition, and conceptual traps.

Q1. Solve: 5x − 20 = 0. x = ?
A. 2
B. 4
C. −4
D. 0
Q2. Roots of x^2 − 7x + 10 = 0 are:
A. 2 and 5
B. 2 and 5
C. −2 and −5
D. 1 and 10
Q3. For what k does x^2 + kx + 9 have real roots?
A. |k| ≤ 6
B. |k| ≥ 6
C. k = 6
D. All k
Q4. Solve inequality: −2 < x − 3 ≤ 4.
A. 1 < x ≤ 7
B. 1 < x ≤ 7
C. −5 < x ≤ 1
D. x ≤ 7
Q5. If f(x)=3x−1 and g(x)=x^2, (f∘g)(2) = ?
A. 11
B. 11
C. 12
D. 10
Q6. If sum of roots of ax^2 + bx + c = 0 is 6 and product is 8, equation (monic) is:
A. x^2 − 6x + 8
B. x^2 − 6x + 8
C. x^2 + 6x + 8
D. x^2 − 8x + 6
Q7. Solve: 2x + 3 = 3x − 1.
A. x = 4
B. x = 4
C. x = −4
D. No solution
Q8. If roots of x^2 − sx + p = 0 are r1 and r2, and r1^2 + r2^2 = 25, and r1 + r2 = 7, find p.
A. 12
B. 12
C. 10
D. 14
Q9. Solve |2x − 1| = 5.
A. x = 3 or x = −2
B. x = 3 or x = −2
C. x = 2 or x = −3
D. None
Q10. If f(x)=x^2+1, find f^{-1}(2) (assuming principal branch).
A. 1
B. 1
C. −1
D. ±1
Q11. For which x is 1/(x−2) defined?
A. All x
B. x ≠ 2
C. x = 2
D. x > 2
Q12. If polynomial p(x) has root 3, then (x−3) is a:
A. Factor
B. Factor
C. Root
D. Coefficient
Q13. If sum of roots of x^2 − 4x + c = 0 is 4 and roots are equal, c = ?
A. 4
B. 4
C. 2
D. 1
Q14. Solve inequality: x/(x−1) > 0.
A. x > 1 or x < 0
B. x > 1 or x < 0
C. 0 < x < 1
D. x ≠ 1
Q15. If f(x)=ax + b and f(1)=3, f(2)=5 → find a and b.
A. a=2,b=1
B. a=2,b=1
C. a=1,b=2
D. a=3,b=0
Q16. Quadratic: minimum value of x^2 − 4x + 5 is:
A. 1
B. 1
C. 0
D. 4
Q17. If roots of x^2 − 10x + 21 are α and β, compute α^2 + β^2.
A. 100 − 42 = 58
B. 58
C. 79
D. 42
Q18. Solve: (x−1)(x−2) = 0.
A. x=1 only
B. x=1 or 2
C. x=2 only
D. No real roots
Q19. For which x is √(x−3) defined (real)?
A. x ≥ 3
B. x ≥ 3
C. x > 3
D. x ≤ 3
Q20. If f(x)=x+1 and g(x)=2x, find (g∘f)(3).
A. 8
B. 8
C. 7
D. 9
Q21. If discriminant of x^2 + kx + 16 equals 0, k = ?
A. ±8
B. ±8
C. 0
D. 16
Q22. Solve inequality: x^2 − 1 < 0.
A. −1 < x < 1
B. −1 < x < 1
C. x < −1 or x > 1
D. x = ±1
Q23. If f(x)=x^3, is f bijective on ℝ?
A. Yes
B. No
C. Only on positives
D. Only on negatives
Q24. If polynomial p(x) = x^2 + 2x + 1, factorization is:
A. (x+1)^2
B. (x+1)^2
C. (x−1)^2
D. x^2 +1
Q25. If r is root of 2x − 4 = 0, r = ?
A. 2
B. 2
C. −2
D. 0
Q26. If f(x)=|x|, is it differentiable at 0?
A. Yes
B. No
C. Only from right
D. Only from left
Q27. For which k does x^2 + kx + 1 have no real roots?
A. |k| < 2
B. |k| < 2
C. |k| > 2
D. k = 0
Q28. If f(x)=2x and f^{-1}(x) = ?
A. x/2
B. x/2
C. 2x
D. −x/2
Q29. If roots of x^2 + x − 6 are p and q, p−q = ?
A. √(1 + 24)
B. √25 = 5 (in magnitude)
C. 1
D. 6
Q30. Solve: 3x − 2 < 1.
A. x < 1
B. x < 1
C. x > 1
D. x ≤ 1
Q31. If f(x)=x^2−2x+1, what is vertex?
A. (1,0)
B. (1,0)
C. (0,1)
D. (−1,0)
Q32. If polynomial divisible by (x−2), remainder theorem says p(2)=?
A. 0
B. 0
C. p(2)
D. 2
Q33. If f(x)=1/x, domain excludes:
A. x=0
B. x=0
C. x=1
D. None
Q34. If quadratic has roots 4 and −1, equation is:
A. x^2 − 3x − 4
B. x^2 − 3x − 4
C. x^2 + 3x + 4
D. x^2 − x − 4
Q35. If f(x)=x^2 and g(x)=x+1, solve f(x)=g(x).
A. x^2 = x+1 → x = φ or 1−φ
B. x = (1 ± √5)/2
C. x = 0
D. No solution
Q36. If p(x)=x^2+bx+c has integer roots and product 12, possible integer factors include:
A. (3,4) or (2,6) etc.
B. (1,12) only
C. (−3,−4) only
D. None
Q37. Solve |x+2| > 1.
A. x < −3 or x > −1
B. x < −3 or x > −1
C. −3 < x < −1
D. x ≠ −2
Q38. If f(x)=2x+3 and y=7, x = ?
A. 2
B. 2
C. 3
D. 1
Q39. If quadratic ax^2+bx+c has Δ<0, number of real roots =
A. 0
B. 0
C. 1
D. 2
Q40. If f(x)=x^2 and domain restricted to x≥0, is inverse defined?
A. Yes, f^{-1}(x)=√x
B. No
C. Only for x>0
D. Only for integers
Q41. Solve: x^2 − 2x − 3 = 0.
A. x = 1 ± √4
B. x = 3 or x = −1
C. x = 1
D. No real roots
Q42. If f(x)=ax^2 and f(2)=8 → a = ?
A. 2
B. 2
C. 4
D. 1
Q43. If r1 + r2 = 0 for quadratic, it implies b = ? (for monic x^2+bx+c)
A. 0
B. 0
C. c
D. −c
Q44. If function f is odd, then f(−x) = ?
A. −f(x)
B. f(x)
C. 0
D. 1
Q45. If polynomial has degree 3, maximum number of real roots =
A. 3
B. 2
C. 1
D. 0
Q46. If quadratic x^2 + 4x + 4 = 0, roots equal to:
A. −2 (double)
B. −4
C. 2
D. 0
Q47. If f(x)=x/(x+1), find f(1).
A. 1/2
B. 1/2
C. 1
D. 2
Q48. If roots of ax^2+bx+c are real and positive, which must hold?
A. a and c same sign
B. a and c same sign
C. b positive
D. b negative
Q49. If f(x)=x^2−1, f(2)=?
A. 3
B. 4
C. 0
D. −3
Q50. Best general strategy for algebra MCQs in CAT is:
A. Translate to equations, diagram where helpful, use elimination and check options
B. Memorize all answers
C. Guess randomly
D. Use calculator

Practice & Test-day Tips

  • Practice factoring by patterns and use Vieta for quick root sums/products.
  • For inequalities, draw a number line and mark test intervals.
  • For functions, check domain first, then explore monotonicity for inverses.
  • When parameter appears, use discriminant/consistency conditions to find required ranges.
Created for CAT aspirants • Last updated: 25 Sep 2025 • SEO domain: rsetu.link
Algebra • 50 Qs • rsetu.link