CAT — Geometry: Circles, Triangles, Polygons & Mensuration

God-level, mobile-first geometry notes with clear SVG diagrams per subtopic, solved examples, and 50 practice MCQs. SEO-optimized for rsetu.link.

Level: Advanced Diagrams for each subtopic 50 MCQs
SEO: rsetu.link

Quick Overview

Geometry in CAT tests visual clarity, formula recall, and ability to combine shapes. Focus on: circle theorems (angles & chords), triangle properties (similarity, Pythagoras, sine/cosine rules), polygons (interior/exterior angles, diagonals), and mensuration (areas, perimeters, volumes). Diagram-first approach: always sketch, label, and derive step-by-step.

Circles

Key concepts (with diagram):
Radius Chord AB Tangent Chord center 'to O'
Important: Angle in a semicircle = 90°. Tangent ⟂ radius at point of contact. Equal chords subtend equal angles at center. Power of a point & cyclic quadrilateral properties are high-yield.

Worked examples

Example: If chord AB subtends 60° at centre, arc AB length = (60/360)×2πr = (πr)/3.

Triangles

Altitude Side a Orthocentre (if heights)
Key: Pythagoras for right triangles. Similarity → ratio of sides equal. Area formula Δ = 1/2 × base × height, Heron's formula Δ = √(s(s−a)(s−b)(s−c)).

Important theorems

  • Sine rule: a/sinA = b/sinB = c/sinC.
  • Cosine rule: a^2 = b^2 + c^2 − 2bc cosA.
  • Area via sides: Heron's formula.

Polygons

Regular polygon
Interior angle of n-gon = (n−2)×180°/n. Number of diagonals = n(n−3)/2. Area formulas depend on regularity: regular polygon area = (1/4) n s^2 cot(π/n).

Mensuration (Areas, Perimeters, Volumes)

Rectangle area = l×w Circle area = πr^2
Volume examples: cylinder V = πr^2 h; sphere V = 4/3 π r^3; cone V = 1/3 π r^2 h. Convert units carefully.

Worked example

Example: Area of shaded semicircle of radius r = (1/2)πr^2. If inside a square of side r, remaining area = r^2 − (1/2)πr^2.

50 Practice MCQs — Geometry (Answers highlighted)

High-yield geometry MCQs using the diagrams and formulae above. Each question aims to test core theorem knowledge, quick diagram reasoning, and mensuration conversions.

Q1. Angle in a semicircle is:
A. 60°
B. 90°
C. 45°
D. 180°
Q2. Two radii of a circle subtend an arc of 120°. Central angle = ?
A. 60°
B. 120°
C. 90°
D. 180°
Q3. If chord subtends equal angles at centre, chords are:
A. Parallel
B. Equal
C. Perpendicular
D. Concentric
Q4. Tangent from external point touches circle at T. Radius OT at T is:
A. Parallel to tangent
B. Perpendicular to tangent
C. Same as tangent
D. None
Q5. In triangle with sides 3,4,5 area = ?
A. 6
B. 6
C. 12
D. 7
Q6. Sum of interior angles of hexagon = ?
A. 720°
B. 720°
C. 540°
D. 360°
Q7. Diagonals of rectangle are:
A. Unequal
B. Equal
C. Perpendicular always
D. Angle bisectors
Q8. Area of equilateral triangle side a = ?
A. a^2/2
B. (√3/4) a^2
C. a^2
D. (1/2) a^2
Q9. Interior angle of regular octagon = ?
A. 135°
B. 135°
C. 120°
D. 108°
Q10. If radius r, area of circle = ?
A. 2πr
B. πr
C. πr^2
D. 4πr^2
Q11. Right triangle legs 5 and 12 hypotenuse = ?
A. 13
B. 13
C. 17
D. √169
Q12. If two similar triangles have ratio of sides 2:3, ratio of areas = ?
A. 2:3
B. 4:9
C. 3:2
D. 8:27
Q13. Area of trapezium with parallel sides a and b and height h = ?
A. (a+b)h
B. ((a+b)/2)h
C. ah
D. bh
Q14. Number of diagonals in a decagon = ?
A. 35
B. 35
C. 45
D. 40
Q15. Circumference of circle with diameter d = ?
A. πd
B. πd
C. 2πd
D. πd^2
Q16. In right triangle, median to hypotenuse equals:
A. Half hypotenuse
B. Half hypotenuse
C. Height
D. Radius
Q17. Area of sector with angle θ (radians) = ?
A. (1/2) r^2 θ
B. (1/2) r^2 θ
C. rθ
D. r^2 θ
Q18. For an isosceles triangle with sides (a,a,b), altitude to base b = ? (in terms of a and b)
A. √(a^2 − (b^2/4))
B. √(a^2 − (b^2/4))
C. b/2
D. a
Q19. If regular pentagon side s, interior angle = ?
A. 108°
B. 108°
C. 120°
D. 90°
Q20. Area of rectangle length l width w = ?
A. lw
B. 2(l+w)
C. l+w
D. l^2 + w^2
Q21. If two chords are equal, they subtend equal angles at:
A. Any point
B. Centre
C. Circumference
D. Tangent
Q22. Perimeter of regular hexagon with side s = ?
A. 6s
B. 3s
C. 2s
D. s
Q23. The orthocentre of an acute triangle lies:
A. Outside
B. Inside
C. On hypotenuse
D. At centroid
Q24. Area of right triangle with legs a and b = ?
A. (1/2)ab
B. ab
C. (a+b)/2
D. √(a^2+b^2)
Q25. A circle with diameter d has area = ?
A. πd
B. (πd^2)/4
C. πd^2
D. (πd)/2
Q26. If triangle sides 7,24,25, is it right-angled?
A. Yes (7^2 + 24^2 = 25^2)
B. No
C. Cannot say
D. Only if angle acute
Q27. Volume of cylinder radius r height h = ?
A. πr^2 h
B. 2πrh
C. (1/3)πr^2 h
D. 4/3πr^3
Q28. If interior angles of triangle are in arithmetic progression, what are they (in degrees)?
A. 30,60,90
B. 30,60,90
C. 45,45,90
D. 60,60,60
Q29. If square has diagonal d, side = ?
A. d/√2
B. d
C. d/2
D. √2 d
Q30. If two angles of triangle are 45° and 45°, triangle is:
A. Isosceles right
B. Equilateral
C. Scalene
D. Obtuse
Q31. Area of sector with central angle 180° (half circle) = ?
A. (1/2)πr^2
B. πr^2
C. πr
D. r^2
Q32. If polygon has n sides, sum of exterior angles = ?
A. 360°
B. (n−2)180°
C. 180°
D. 90°
Q33. In a circle, the perpendicular from centre to chord bisects:
A. The chord
B. Angle
C. Arc
D. Tangent
Q34. If regular triangle (equilateral) has perimeter P, area = ? (in terms of P)
A. (P^2)/(12√3)
B. (P^2)/(12√3)
C. (P^2)/9
D. (P^2)/(16)
Q35. If two chords are equidistant from centre, they are:
A. Equal in length
B. Parallel
C. Perpendicular
D. Concentric
Q36. Volume of sphere radius r = ?
A. (4/3)πr^3
B. πr^2
C. 2πr
D. (1/3)πr^2 h
Q37. If triangle sides are proportional 3:4:5 it is:
A. Right-angled
B. Equilateral
C. Isosceles
D. Obtuse
Q38. Area of regular n-gon with side s approximates to?
A. n s^2
B. (1/4) n s^2 cot(π/n)
C. (1/2) ns^2
D. ns
Q39. If a triangle has sides 8,15,17, area = ?
A. 60
B. 60
C. 68
D. 34
Q40. If arc length = rπ/2, central angle is:
A. π/2 radians (90°)
B. π/2 radians (90°)
C. π radians
D. π/4 radians
Q41. If triangle area = 30 and base = 5, height = ?
A. 12
B. 10
C. 6
D. 8
Q42. If polygon interior angle = 120°, number of sides = ?
A. 6
B. 5
C. 8
D. 10
Q43. If circle radius 7, circumference ≈ ? (use π=22/7)
A. 44
B. 44
C. 49
D. 154
Q44. If triangle is equilateral side 6, area = ?
A. 9√3
B. 9√3
C. 18
D. 6√3
Q45. If chord length equals diameter, chord is:
A. Diameter
B. Radius
C. Tangent
D. Secant
Q46. Area of ring between two concentric circles r2>r1 = ?
A. π(r2^2 − r1^2)
B. π(r1^2 + r2^2)
C. 2π(r2−r1)
D. π(r2−r1)
Q47. If polygon has 8 sides, each exterior angle = ?
A. 45°
B. 60°
C. 90°
D. 30°
Q48. If a cone radius 3 and height 4, volume = ? (π omitted)
A. (1/3)×9×4 = 12 (π omitted)
B. 36
C. 48
D. 9
Q49. If two circles touch externally, distance between centres = ?
A. r1 + r2
B. |r1 − r2|
C. 0
D. 2r1
Q50. Best approach when geometry question looks complex:
A. Draw accurate diagram, mark knowns, look for symmetry/similarity and apply theorems
B. Guess
C. Use calculator blindly
D. Ignore diagram

Practice & Test-day Tips

  • Always draw a clear labeled diagram. Mark right angles, equal sides, parallel lines, and given lengths.
  • Memorize key circle theorems and triangle area formulas; practice common mensuration conversions (cm↔m).
  • Use symmetry and similarity to reduce multi-shape problems to basic units.
  • For numeric answers, estimate to eliminate wrong options quickly.
Geometry • 50 Qs • rsetu.link